
 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

Domain specific language approach to technology-

enhanced learning.

Pozdniakov Sergei
e-mail: pozdnkov@gmail.com

Saint Petersburg State Electrotechnical University (ETU)

Saint Petersburg, Russia

Ilya Posov

e-mail: iposov@gmail.com

Saint Petersburg State University

Saint Petersburg, Russia

Abstract

Which language should a student use to interact with computer programs? The present work answers

this question and explains the reasons for the answer. A student should interact with a computer using

the language of the subject domain. The domain-specific language has a fixed context, that does not

depend on a student, as well as a set of terms and operations, which can be formalized. That is why

this language is both convenient for the user and good for computer implementation. The domain-

specific language is also good as it does not require a special training for the teachers, because it is

defined by the contents and tools of the subject field. We consider two types of domain-specific

languages: the first type is needed for precise representation of problems and the second type serves

for precise solution representation. "Two domain-specific languages" approach is implemented by us

in the WiseTasks system and is presented in the report.

1. Introduction
The basic way to estimate the advantage or disadvantage of the computer software in teaching of

mathematics is to understand its psychological role in intellectual progress of a student [7]. If we

consider a computer as a tool [1] then the role of a computer tool can be estimated as:

• computer software is useful for teaching of mathematics if it fulfils tool functions,

and a student forms her own internal intellectual mechanisms by means of it [2]

• computer software is harmful if it replaces intellectual operations and a student uses

it instead of his or her own internal intellectual mechanisms.

A student masters his or her own intellectual mechanisms through the problems solving. In

mathematical teaching the concept of a problem has both psychological and didactic meaning.

Here we will discuss possibilities to support students work with mathematical problems. The

main goal of the article is to discuss some didactic ways to represent problems in systems that

provide technology enhanced learning in mathematics. These ways of representations aim to

improve the systems according to their main psychological goal that is the development of

intellectual skills of the trainee.

Discussion of problems role in the process of learning mathematics is usually reduced to the

discussion of solution features of various tasks. At the same time (Polya) [11] notes that when a

student meets an unknown problem she should be able to formalize it herself, and while she is

solving a hard problem, to break it up in a number of smaller or auxiliary problems and to simplify

the initial problem statement. Thus, there is an important question of how to support a creation of

well formalized mathematical problems statements by students.

Note that the most elaborate feature of the tools that support students in the work with

problems is the ability to formally describe the process of solving a problem.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

150

For example, dynamic geometry allows us to represent solutions of the geometry problems

using the language of linear geometrical algorithms [9].

At the same time there is a lack of systems that allow formally describing the problems by

themselves. To some extent this issue is addressed in the computer simulation systems that make

user to describe a problem by means of a number of differential equations or some other complex

objects. But such systems are not supposed to be used to describe problems that are usually stated

for a student during her education. For example, if we consider combinatorial or geometrical

problems, then we will face the fact that there are no existing systems that allow to describe a

problem statement in such a way that it will be possible to automatically test a solution provided by

a student. The absence of the systems with such properties leads us to the need of special

knowledge assessment means such as the multiple-choice tests.

In this paper we present a way to extend capabilities of the existing systems such as the

dynamic geometry systems so that they will provide students with formal problems statements that

will be used to test formal solutions provided by students automatically.

Such approach is implemented by us in the system WiseTasksGeometry presented in the

report.

We will call such an approach to creation of means that support problems solutions

bilingual. This means that one should develop not only means to describe the problems solutions,

but also means to describe problems statements. Both will use an object-oriented approach, i.e.

special languages for description of these important aspects of problems. Thanks to the

formalization of these components, the ability to test problems solutions over their statements

arises.

The usage of two languages implements a basic principle: the student cannot use the tool to

avoid problem solving because both languages (the language of problem description and the

language of solution description) do not have any means to solve a problem and therefore all the

tools can be made available to the student.

On the other hand, the fact that a student has a tool for statement description makes it

possible for him or her to state their own research problems. Thus, the system gives new didactic

possibilities in teaching of mathematics: the system supports students not only to solve problems

but also to state them.

The presented approach is also applied in the other system presented in the report:

WiseTasksCombinatorics [3] uses the language of the set theory to state problems and the language

of mathematical formulas to solve stated problems.

The analysis presented in the report demonstrates the importance of domain specific

languages for problems statements and solutions descriptions, and the importance of the usage of

different languages for this purpose.

2. Languages for technology-enhanced learning

Let us consider the language aspects of working with problems. A teacher does not usually think

whether the statement of the problem in the natural language that she offers to a student is

completely formalized. At the same time all the attempts to formalize the presentation of

mathematical ideas demonstrate that it is really hard to formalize all the aspects of the mathematical

language. Generally a statement of a problem presupposes some conventions and agreements, or, in

other words, the language context. Outside of this context a problem may even change its content.

This reasoning demonstrates that it is almost impossible to use a natural language for formal

description of problems that is aimed to be used in a computer system. The opposite way is the

usage of some algorithmic language to represent statements. As Seymour Papert [2] demonstrated

in his works, this approach is possible, but it is applicable mostly to the description of algorithms of

problems solutions, and not the description of problems themselves.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

151

The present work gives a reply to the raised question and explains the reasons for it. The

student should interact with the computer using the language of the subject field. The subject field

language has a fixed context, that does not depend on the student, as well as a set of terms and

operations, which can be formalized. That is why this language is both convenient for the user and

good for computer realization.

The analysis of the program tools supporting the teaching mathematics shows, that the

environments based on the domain-specific languages are the most widespread. For example, in

dynamic geometry systems, such language is the language of the geometric constructions, or, in the

computer algebra systems, e.g. LeActiveMath [8], the language of the algebraic transformations is

used.

The domain-specific language is also good as does not require a special training for the

teachers, because it is defined by the contents and tools of the subject field.

3. Language tools to describe the mathematical problems statement and

solutions

In the previous analysis we highlighted the two aspects of the representation of problems in the

systems that support technology enhanced learning in mathematics. They are the representation of

the problems statements and the representation of their solutions. While the latter can be considered

as developed fairly well, the former needs a detalization.

The existing descriptive (language) means for the representation of problems statements are as

follows:

The most spread languages for describing the problem statement are:

1. Verbal description of the problem. It is usually informal and cannot be used for the exact

definition of the problem as it contains the context based on the implicit agreements between

the teacher and the student, which are informal and can differ from one teacher to another.

2. The model when the professional modelling systems are used for the problem definition.

This method is based on the phenomena description in the terms of different types of the

equations systems (including differential ones) and it can also be represented by a graphic

description of the relations between the problem objects.

3. Problem statement drawing, representing the problem data, but not the target to achieve

when solving this problem. That is why the drawing is used together with the verbal

description of the problem and makes it more exact.

The first and the last variants are difficult to be formalized. At the same time if we assume

that it is possible to present a formal description of a problem, then it may be used to automatically

generate its verbal and graphical representation.

Let us take a look on some software that allows describing mathematical objects.

«The Geometry Expressions» system is an interesting example of how the modelling is used to

describe the geometrical problems through the relations between the geometric objects. This system

uses a language describing the relations between the objects (for example, when building a

perpendicular from the point O to the straight line l, a random point M on the line and the condition

«OM is perpendicular to l» are used). In this system, every object of the drawing is described by its

relations to the other objects, and the system solves the equations for building the defined object.

This approach is totally different from the one of the dynamic geometry, where the object is built

directly and is defined by a sequence of the elementary operations. By the way, «The Geometry

Expressions» system is used as a dynamic geometry system - for describing the problems solutions,

but in our opinion, this language (that is the language of the relations between objects) is better for

describing the problem statement by the teacher, and the dynamic geometry language is better for

solution description by the student. Such approach is realized in the WiseTasks_Geometry system.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

152

The problems solutions description languages are more popular in developing computer tools for

teaching mathematics:

1. The most popular method (which cannot be automatically analysed by now) is a

combination of the verbal description of the solution along with building sketches, writing

formulae and transformations sequences, logic conclusions.

2. The solution representation by filling in the templates, that suppose one or several standard

solutions for the problem and "lead" the student to one of the solutions; this method has

significant disadvantages, because limits the student's cognition [4] and does not contribute

to productive thinking forming [5].

3. Solution representation as a sequence of actions (linear algorithm) in the subject field, not

limiting the student in choosing the solution method. This approach is used in the dynamic

geometry programs, and the popularity of using it is an evidence of its efficiency.

It is important to discuss the representation method for the geometrical proof problems used

in the little-known educational software «Planimetry 7-9» [6]. This program proposes the building

relations between geometric objects both for problems and solutions descriptions. The relations are

searched by the student and are checked by the tools that are usually used in dynamic geometry.

The problem statement is represented by an unordered set of relations, and the solution - proof - by

an ordered sequence of relations between the existing and constructed during the solution geometric

objects (additional constructions). The proof in this case cannot be checked automatically, because

the logical links in it are not fixed as well the theorems that are the base for making conclusions.

Given the analysis represented in the article by the key works, we came to the following

conclusions:

1. To make an adequate representation of the mathematical problem statement and to describe

its solution in the way allowing the automatic check, the problem statement and solutions

description languages are needed.

2. The language for problem description and the language for the solution description are

different. The first one is used to avoid uncertainty in the statement formulation and contains

the description of the properties for the solution to comply with and the set of operations

used to build the solution.

3. The solutions description language should provide the representation of any solution of the

problem from the given set using the subject tools. It also should allow the verification of

the solution created using this language based on the problem description.

Let's examine the WiseTasks system created within the present work and including the

problem description language, the solutions description language and also the solutions verification

tools. The WiseTasks system allows automatic verification of the solution created using the

solutions description language, on the set of predicates of the problem statement written using the

problem description language.

4. WiseTasks system
The present analysis gave two directions to develop the domain-specific languages to support

teaching mathematics:

1) The development of the languages to describe the problems in different subject fields

2) The development of the languages to describe the problem solutions within the

environments modelling the corresponding subject fields

These languages are, on the one hand, independent, on the other hand - the y should work

with the same data representations (in the teacher's area the problem is created, in the student's area

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

153

it is solved, then the solution is checked again in the first area to comply with the problem statement

described formally).

Let's examine a realization of the system for teaching geometry. For it, a special language to

describe the statement of the problems that are usually solved by means of the dynamic geometry

has been created. The GeoGebra system was chosen as the realization of the solutions description

language. This system is open for integration with other applications.

5. Domain-specific languages for geometry problems statement and solutions

editors

To develop the WiseTasks domain-specific language editor, the MPS (Meta Programming System)

from JetBrains [10] was taken as a base. It allows creating domain-specific languages and editors

for them. This system is complex enough and does not have an export feature for the created editor

to other products, so we use an MPS-like editor in our system. This editor looks like the text one,

but uses the grammar constructions context and limits the user in language sentences forming;

therefore, there is no possibility to enter the text with incorrect syntax.

The problem in a structured editor consists of cells. There are cells without editing (hints for the

users) and cells with editing (content part of the problem).

There are several types of the cells with editing.

1. Simple cells in which a number, a string, a boolean value (yes/no) is entered or a value is

selected from the list. Example: the task heading field, the tool selection field (an item from

the list of the tools). By default, such cells are empty. Available operations: empty the

contents, select from the list (in case it exists).

2. Cells-structures, which consist of the sequences of cells. By default, these cells are empty

(for example, an element of the predicates list). The expanding list (like the simple cell with

value selection) allows to select the structure type. Available operations: empty the contents,

select the contents type.

3. Cells-lists, which consist of the sets of cells. By default, such set can be empty (for example,

the "do not limit the participant" in the tools list) or contain one empty element (for

example, the list of predicates).

The screen-shots on Figures 1-3 represent the operation of the WiseTasks_Geometry

program that is based on combination of the developed problem description and solutions

verification language with the GeoGebra environment used to build constructions by the student.

The Figure 1 shows the statement enter window, which consists of problem heading, informal

heading description (in the combinatorics problems support system described below, it is filled in

automatically to avoid the mismatching with the formal problem description), tools selection menu,

that are available for the student (by default, all the tools are available) and the editor for

consecutive entering of the predicates, describing the relations between the defined elements and

the ones to find, that is, in other words, the formal description of the problem statement.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

154

Figure 1: the formal description of the problem statement

Let's note that the data can be defined by the drawing or entered from the drawing (Figure 2).

Figure 2: data can be defined by the drawing or entered from the drawing

The problem is saved in the xml-file with an additional file in the GeoGebra format, which

includes the data on the constructions on the drawing. In the student's framework, the problem

statement is returned; the tool bar contains only the allowed tools.

The student can perform any actions to solve the problem. The created dynamic drawing can

be verified by executing the command "Check solution" in the area of the formal description of the

problem.

Let's note, that procedurally the system allows entering wider class of the verified problems

without setting up the parameters values. For example, the problem shown on the figures 1 and 3

includes the construction of a square by means of any tools of the dynamic geometry.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

155

Figure 3: construction of a square by means of any tools of the dynamic geometry

Meanwhile, the task does not include neither the length of the side nor the square position

that makes the problem more natural in terms of its mathematical contents.

Another feature of the WiseTasks system is the possibility for the student to set up a problem by

himself, without knowing its solution. Figure 2 shows more difficult problem of a tangent line

construction to two circumferences. This problem is easy to set, but difficult to solve. But the

system will check the solution of this problem proposed by the student, though the solution has not

been entered into the system!

6. Languages for combinatorial problems description

The idea of the combinatorial problems description, solution and verification differs from the

geometrical application described above. But at the same time the general approach of problem

representation may be the same: to represent the task as xml-file including the exact problem

description and the verification method based on the comparison of the provided answer with the

problem statement.

Let’s examine one class of combinatorial problems related to the finding the formula for

calculating the number of the objects complying with a certain criteria.

The criteria in this case may be a formal set definition. The operations on sets such as Cartesian

product which allows constructing the objects with a variety of features, or projection operation,

which allows marking those features and finding relationships between them, are included in the

problem description language. The language can be extended by including other operations on sets

or even with the new objects. For example, the possibility to describe the groups of symmetry in a

shape was included specifically for the problem of Platonic solids colourings (Burnside's lemma).

For the solution description language the language of arithmetical expressions is used, with the

addition of general combinatorial functions such as number of permutations (factorial), number of

combinations.

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

156

7. Problem statement and solution description domain-specific languages editors

in combinatorics
The following two approaches are used to create an easy-to-use problem statement editor:

1. Use of a general editor explaining the entered object at the time of input (by selecting the

possible option), just like the editor of the geometrical problems described above

2. Creating the simple editors for each class of the combinatorics problems. In such editors, the

problem is constructed by combining the parameters which define the set of the problems of

the same class. The resulting statement will be automatically translated into general editor

language.

The Figure 4 shows an example of the editor based on the problem description using the variety of

the ordered numeric character sets. The parameters are: the range, the count and the position

numbers of the digits on which the restriction is imposed. The restrictions on the digits of the set

and the sum of the digits standing on the specific positions are defined using the equality and

inequality.

For example a popular Russian problem about the “lucky tram tickets” can be easily

formulated using this language: how many six-digit decimal sets with the sum of the first three

digits being equal to the sum of the rest exist?

After the parameters are chosen and the restrictions are imposed, one should click the

Generate button, so the formal problem description is automatically translated into verbal

description (that guarantee the equivalence of the textual and formal statement). The editor also

allows modifying the automatically generated textual description in order to make it more literary.

Moreover, a picture may be added to the problem by combining the default picture objects (digits in

the given example). A correct combination may be used as a picture for the problem.

Figure 4: editor for problems of the class “ordered numeric sets”

Using the student part of the program, one can select any problem from the predefined sets

(standard book, problems proposed by the student, etc.)

A special formula editor with predefined combinatorial functions is provided to enter the

answer to a problem. The answer is verified by comparing the number of the possible variants

generated by the program based on the problem formal definition with the arithmetical expression

entered by the user. The comparison is always accurate since the program is supposed to deal with

the long integers. The student part of the program keeps a record on what the user entered and the

received results of verification (Figure 5).

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

157

Figure 5: students interface

8. An experiment
To experimentally confirm the stated hypothesis about the importance of the bilingual approach in

the creation of software tools the combinatorics educational materials were developed: ten sets of

problems coverings all the topics of the combinatorics and some topics of the number theory. The

sets of problems were implemented as web-applications and put on the Internet site. The students

(16-17 years old) were assigned to: 1) Solve several problems from the problems sets 2) Devise a

problem, formalize it and put it in some of the problems sets, solve it and publish on the site. 3)

Solve several problems of other students.

There were about 200 students participating in the experiment. The analysis shows that 1)

the problem set implemented as an application can be effectively used in the distance learning 2) the

existing teaching methodology does not facilitate originality in devising of problems, there were

just a few original problems 3) about 10% of participants proposed interesting problems with

unobvious solutions, that shows, that it is feasible to use the developed tools for support of the

productive approach in the teaching of mathematics. 4) All participants managed to check the

correctness of solutions of problems they devised without a teacher, so the teacher did not have to

perform any routine activities, and were able to concentrate on the problems contents and the

approach students offered to solve a problem (that was certainly correct because was ensured by the

system).

During the second experiment the “mathematical battle” competition was organized for the

students that were 12-15 years old. A participant should devise problems that were as hard as

possible but still solvable by herself, give them to the opponents, get the problems prepared by the

opponents and solve them. The analysis of the results demonstrated that the conclusions presented

above still hold for the younger students. Also it demonstrated certain issues that arise with the

usage of this technology. It is hard for students to foresee all the problems of automatic solutions

verifications that would arise for their statements. The most active participants invented problems

 The Electronic Journal of Mathematics and Technology, Volume 8, Number 2, ISSN 1933-2823

158

that needed intensive computation and it was not possible for the system to complete them in

reasonable time.

Needless to say, the last issue may be addressed by adding additional restrictions to the languages

used to describe problems statements.

9. Conclusions

The introduced approach for the mathematical problems automatic preparation and verification is

based on the different languages used for a problem description and solution. The formal

description of a problem allows verifying the solution even if it is unknown. The usage of the

problem description languages supposes the development of the difficult problems (not tests)

representation formats and allows considering them apart from the methods of the solution

verification. The differentiation between the problem statement description editors and problem

solution description editors gives an opportunity to make a research in the application domain,

which the problem description editors were created for. The students will be able to create

themselves the new tasks and then solve them together or with the teachers. The proposed approach

gives the new technological opportunities for the already established mathematical competitions

like “mathematical tournament” when two teams exchange the problems. The tools for the problems

creation support can bring the new feature in the competition: creation and preliminary solution of a

problem.

10. References

1. Vygotsky L. Thought and language. Cambridge, MA: MIT Press, 1934.

2. Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas, 1980, ISBN 0-

465-04674-6.

3. Bogdanov M., Pozdnyakov S., Pukhov A. Multiplicity of the knowledge representation

forms as a base of using a computer for the studying of the discrete mathematics.

PEDAGOGIKA, v.96, 136-142, 2009.

4. Pozdnyakov S., Ivanov S. Productive teaching of mathematics or how information

technologies can support intellectual freedom of the learner. Proc. 10-th International

Congress on Mathematical Education (National presentation: Russia, Selected materials,

115-124). Copenhagen, Denmark, 2004.

5. Wertheimer, Max. Productive thinking. Harper & Row, enlarged edition, 1945.

6. Kobelsky V.L., Stepanova E.V. Computer educational system “Planimetry 7-9”. Computer

Tools in Education Journal (rus), 2-2001, 59-67, 2001.

7. Viktor Freiman, Djordje Kadijevich, Gerard Kuntz, Sergey Pozdnyakov, Ingvill Stedoy.

Challenging mathematics beyond the classroom enhanced by technological environments

(in Challenging Mathematics In and Beyond the Classroom: Chapter 3). C Springer Science

+ Business Media, LLC 2009.

8. G. Goguadze, A. Gonz´alez Palomo, E.-Melis. Interactivity of Exercises in Active-Math.

Towards Sustainable and Scalable Educational Innovations Informed by the Learning

Sciences - Sharing Good Practices of Research, Experimentation and Innovatio. Edited by

Chee-Kit Looi, David Jonassen, Mitsuru Ikeda, Frontiers in Artificial Intelligence and

Applications, Volume 133, 109 – 115, 2005.

9. Ulrich Kortenkamp, Axel M. Blessing, Christian Dohrmann, Yves Kreis, Paul Libbrecht,

Christian Mercat. Interoperable interactive geometry for Europe – first technological and

educational results and future challenges of the InterGeo project. Proceedings of CERME

6, January 28th-February 1st 2009 (1150-1160). Lyon, France, 2010.

10. Meta Programming System http://www.jetbrains.com/mps/

11. Polya, G. How to Solve it. Princeton University Press, 1945.

http://www.jetbrains.com/mps/

